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Using Regression Models
to Estimate Program Eftects

Charles S. Reichardt, Carol A. Bormann

Earlier chapters have described four research designs that are widely
used for estimating program effects: the randomized experiment, the regres-
sion-discontinuity design, the nonequivalent comparison group design, and
the interrupted time series design. This chapter explains how to analyze data
from each of these four designs, using simple but effective statistical tech-
niques that fall under the rubric of regression analysis.

The first section describes the purpose of statistical analysis. The four
sections that follow explain how to analyze data from each of the four re-
search designs. The purpose of the presentation is not to make you a statistical
expert but rather to give you a sense of the logic behind the statistical analyses.

The Tasks of Statistical Analysis

The purpose of the four designs is to estimate the effects of a program or treat-
ment. For example, an evaluation of the first year of “Sesame Street” esti-
mated the effects of the television series on preschool children’s learning and
readiness for school (Ball and Bogatz, 1970). To estimate the effects of “Se-
same Street,” or of any other program, three tasks must be accomplished.

The Statistical Significance of a Treatment Effect

The first task is to show that the treatment effect is statistically significant.
An introduction to statistical significance testing is given earlier in this volume
in Chapter Seventeen by Newcomer. However, it is useful to review briefly
the meaning of statistical significance tests.

Preparation of this chapter was supported, in part, by Grant U01-AA08778 from the National
Institute on Alcohol Abuse and Alcoholism. The authors thank the editors of the volume for their
helpful comments.
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Perhaps the purpose of a statistical significance test can best be un-
derstood in the context of a randomized experiment. In the simplest of such
experiments, individuals are randomly assigned to two treatment groups:
an experimental group that receives the program being evaluated and a con-
trol or comparison group that does not receive the program being evalu-
ated. If the program has an effect, the two groups will perform differently
on an appropriate outcome measure. The problem is that even if the pro-
gram being evaluated has no effect, the performance of the two groups on
the relevant outcome measure will not be identical. One group would per-
form better on average than the other group simply because of chance differ-
ences introduced by the random assignment.

Therefore, the question facing the researcher is not whether there is
any difference in performance between the two groups on the outcome mea-
sure, but whether the difference in performance is larger than would be ex-
pected by chance. This is the question that is answered by using a statistical
significance test. If the results of the test are statistically significant, it means
the observed difference is too large to be reasonably attributed to chance
differences and therefore is indicative of a treatment effect.

Imagine a randomized experiment with five individuals assigned to
each of two groups. The hypothetical data from this experiment are pre-
sented in Table 18.1. The first column in the table gives each individual’s
outcome score. The second column indicates whether the individual is in
the experimental or comparison group. With these data, a statistical sig-
nificance test can be performed using a ¢ test. The results of such a test are
a t value, degrees of freedom (df), and an obtained p value. By convention,
the 5 percent level of statistical significance is used. This means that if the ob-
tained p value is less than or equal to .05, the results are judged to be sta-
tistically significant; otherwise, they are not. For the data in Table 18.1,
the results are t=3.60, df =8, p=.007. Because p < .05, one would con-
clude that the mean difference between the scores in the experimental and
comparison conditions was statistically significant, and therefore, larger than
could reasonably be expected by chance. In other words, the mean differ-
ence between the groups provides evidence in favor of a treatment effect.

Table 18.1. Data from a Hypothetical Randomized Experiment.

Qutcome Score Group
20 Experimental
24 Experimental
27 Experimental
i8 Experimental
23 Experimental
16 Comparison
19 Comparison
10 Comparison
15 Comparison

11 Comparison
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It is possible for a mean difference between treatment groups to be
statistically insignificant, even though a treatment effect is present, simply
because the treatment effect is small relative to the background noise of chance
differences. The power of a statistical significance test is a measure of the
test’s ability to detect small treatment effects when they are present. One
way to increase the power of a statistical significance test is to increase the
size of the sample (that is, the number of individuals included in the ran-
domized experiment). Power also can be increased by adding covariates to
the analysis, as described below. Wise researchers verify that the power of
their statistical test is adequate given the size of the treatment effect that
is likely to arise. Kraemer and Theimann (1987) provide computational
procedures for calculating by hand the power of simple statistical significance
tests and Borenstein and Cohen (1988) provide a program for calculating
power using a computer (also see Cohen, 1977; Lipsey, 1990).

The Size of a Treatment Effect

The results of a statistical significance test reveal whether an estimated treat-
ment effect is larger than reasonably could be expected by chance. But the
results of a statistical significance test do not reveal how large the treatment
effect is. The second task of statistical analysis is to estimate the size of the
treatment effect. Without this information, one cannot judge whether the
effect is of practical importance and whether the treatment is worth the ex-
tra cost and effort required to implement it. To make informed decisions,
policymakers need to know the size of treatment effects.

Unfortunately, the size of a treatment effect can never be known ex-
actly. In a randomized experiment, for example, the mean difference be-
tween the outcome scores in the experimental and comparison groups is an
estimate of the average effect of the treatment. However, this mean differ-
ence in outcome scores will not be exactly equal to the average effect of the
treatment. The mean difference also will reflect the effects of differences be-
tween the groups that were inevitably introduced by the vagaries of random
assignment. Because the size of these chance differences cannot be known
exactly, neither can the size of the treatment effect. The best that can be
done is to estimate the size of the treatment effect within a margin of error
for a given level of confidence. The margin of error takes account of the
effects of chance differences.

‘The margin of error depends on the level of confidence that one desires
to have in the results. Conventional practice is to use the 95 percent level
of confidence when calculating the margin of error. Once the level of con-
fidence is chosen, the treatment effect estimate and the margin of error are
packaged together in what is called a confidence interval.

For example, an estimate of the average treatment effect for the data
in Table 18.1 is equal to the mean difference between the groups on the
outcome variable, which is 8.20. The 95 percent margin of error for this
estimate can be easily calculated using a computer program and is equal
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to0 5.26. So a 95 percent confidence interval is equal to 8.20 + 5.26. This
means that we can be 95 percent confident that the average treatment effect
in the population from which the sample was drawn is between 2.94 and
13.46, assuming there are no other threats to validity in the study.

It is important to include the confidence interval when reporting the
size of a treatment effect to keep readers from being misled. For example,
there is a substantial difference between estimating the average effect of a
program as 10 plus or minus 5 with 95 percent confidence, and estimating
the average effect of a program as 10 plus or minus 50 with 95 percent con-
fidence. In the first case, the effect of the program is almost certainly posi-
tive, while in the second there is a good possibility that the program’s effect
is negative. Presenting the estimate of the program’s effect as 10 without
reporting a margin of error would fail to convey the appropriate degree of
uncertainty about the estimate (Reichardt and Gollob, 1987).

The size of the margin of error for a given level of confidence is called
the precision of the estimate of the treatment effect. For a given level of con-
fidence, one would like the margin of error to be as small as possible, just
as one would like the power of a statistical test to be as high as possible.
Like power, precision can be increased by increasing the sample size or by
adding covariates, as described later.

Discovering and Removing Biases

The estimate of an effect can be biased by a variety of threats to validity.
It is important to recognize these potential sources of error and to try to
remove their biasing effects. A recurring theme in the present chapter will
be the value of drawing pictures of the data both to get a feel for the infor-
mation they contain and to spot potential sources of bias.

Although most of what follows concerns statistical analysis, the reader
should keep in mind that fancy statistical procedures may not be the most
efficient means of reducing or removing biases. For this purpose, thought-
fulness in data collection often is superior to sophistication in statistics. Glass
(1988) provides an illustration of this principle based on the data in Figure
18.1. This figure shows the enrollment in Denver public schools from 1928
to 1975. As marked by the arrow, court-ordered desegregation began in 1969.
The research question of interest is how much of the decline in enrollment
following 1969 was due to the court mandate and subsequent “white flight.”
No degree of statistical machination could answer this question satisfactorily
using the data in the figure. However, the question could be answered well
with a few thoughtfully chosen refinements in data collection. As Glass (1988,
p. 460) explains, this question

could be resolved fairly conclusively by breaking down and plot-
ting in several alternative ways the total enrollment series in
Figure [18.1]. Breaking the enrollment data down by grade
might cast a little light on_things. If i’s really white flight that
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is causing the decline, one might expect a larger decline at the
elementary grades than at the secondary grades, particularly
grades 11 and 12 where parents would likely decide to stick it
out for the short run. If enrollment data existed separately for
different ethnic groups, these time series would provide a re-
vealing test. If they showed roughly equal declines across all
ethnic groups, the “white flight” hypothesis would suffer a major
setback. Data on enrollment that could be separated by indi-
vidual school, neighborhood, or census tract would be excep-
tionally valuable. These various units could be ranked prior to
looking at the data on their susceptibility to white flight. Such
a ranking could be based on variables like “pre-1969 ethnic mix-
ture,” or “mobility of families based on percentage of housing
values mortgaged or amount of disposable income.” If the large
enrollment declines fell in the highly susceptible regions, the
pattern would constitute some degree of support for the white
flight hypothesis,

As you conduct statistical analyses, ask yourself the following ques-
tions. Is the effect statistically significant? How large is the effect? How might
the estimate of ty\/cffect be biased and how can these biases be removed?

Randomized Experiment

In a randomized experiment, individuals are assigned to treatment condi-
tions at random. After the different treatments are administered, the indi-

Figure 18.1. Entollment in Denver Public Schools.
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viduals are assessed on an outcome variable. The difference between the
mean of the outcome scores in the different treatment groups is an estimate
of the average effect of the different treatments. A test of the statistical sig-
nificance of the estimate and a confidence interval for the size of the effect
can be calculated as described above. Detailed discussion of randomized ex-
periments is provided earlier in this volume in Chapter Eight by Dennis.

In interpreting the results of a randomized experiment, it is useful
to draw a picture of the distribution of the outcome scores for each treat-
ment group separately and to examine these pictures to get a sense of how
the scores differ. One thing to look for is a difference between the treatment
groups in the variability of the scores. This is evidence that the effect of the
treatment varies across different individuals, a topic discussed further be-
low. In addition, standard statistical significance tests and confidence inter-
vals assume that the variability is roughly equal in the two groups. If the
variability of the outcome scores appears dramatically unequal across the
groups and if the sample sizes in the groups are dramatically different, alter-
native statistical procedures (for example, an unpooled-variance ¢ test) might
be appropriate. A statistical consultant can help with these determinations.

It is also useful to examine the pictures of the data to learn whether
the distributions are symmetric or skewed. A positive skew means that many
scores are piled up at the low end of the distribution, with scores trailing
off at the high end so there are some high scores that are quite far removed
from the rest of the pack. Income and net worth, for example, are usually
positively skewed since most incomes pile up at the low end but a few people
have quite high incomes. Negative skew is the opposite; most of the scores
pile up at the high end with scores trailing off atjthe low end.

When a distribution of scores is skewed, the mean can be a poor way to
characterize the center of the scores and so perhaps should not be used for
estimating a treatment effect. The mean also can be a poor way to characterize
the center of a distribution if there are a few very extreme scores (outliers),
especially if the sample size is small. If the mean is suspect for either reason,
calculate the median (that is, the score at the 50th percentile) because it usually
is more representative of the center when a distribution is skewed or has out-
liers. Then see whether the difference between the medians tells the same
story as the difference between the means. Also try repeating the analysis
using the means but with the outliers removed. If the difference between the
medians is dramatically different from the difference between the means or
if the results change with the outliers removed, you may want to use alterna-
tive methods for calculating statistical significance tests and confidence in-
tervals. Possible alternatives might be nonparametric procedures or proce-
dures using trimmed distributions. See a statistical consultant for assistance.

Including Pretests in the Study

In contrast to the outcome (or posttest) measure that is collected after the
different treatments are administered, a pretest measure is collected before
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the treatments are administered. Pretest measures need not be included in
a randomized experiment, but there can be substantial advantages to in-
cluding them.

Checking Random Assignment. In field studies, the random assign-
ment of individuals to treatment conditions is often corrupted (Boruch and
Wothke, 1985; Braucht and Reichardt, 1993; Conner, 1977). If random
assignment was successfully implemented, the distributions of pretest scores
should be similar across the treatment groups. However, if random assign-
ment was corrupted, the distributions might be quite different. Therefore,
pretest scores can be used to check the integrity of the random assignment
procedure. If random assignment appears to have been compromised, it
might be necessary to use the analysis strategies described in the section on
the nonequivalent comparison group design.

Coping with Differential Attrition. Some of the participants in the study
might drop out before the outcome measure is collected. Such attrition is
a potential source ofbias in the study, especially if the rate of attrition differs
across the treatment groups. In particular, bias is introduced if individuals
who would score high (or low) on the outcome measure tend to drop out
from one treatment group more {or less) than from the other treatment group.
Pretest measures are necessary to try to correct for this bias.

Understanding the nature of any differential attrition requires com-
paring, across the treatment conditions, the pretest scores of individuals who
dropped out of the study with the pretest scores of the individuals who did
not drop out. Taking account of differential attrition requires making ad-
Jjustments in the outcome scores based on differences between the groups
on the pretest scores. The methods for making these adjustments are the
same as the methods for analyzing data from the nonequivalent comparison
group design, which is described below. The best course of action is to try
to avoid attrition as much as possible.

Increasing Power and Precision. Including one or more pretest mea-
sures in a statistical analysis as covariates can increase the power or the pre-
cision of the results. One such analysis is called an analysis of covariance.
In regression terminology, you regress the outcome measure onto both the
pretest measure and a variable representing treatment-group membership.
Alternatively, pretests could be used as blocking variables rather than covar-
1ates, but this is a bit more complicated and will not be considered here (see
Reichardt, 1979). In either case, you might want to ask a statistical consul-
tant for assistance with the analysis.

The increase in power and precision that can be obtained by includ-
ing a pretest in the analysis as a covariate depends on the correlation be-
tween the pretest and the outcome measure. The higher the correlation, the
greater the power and precision. For example, adding a pretest that corre-
lates .5 with the outcome measure increases power and precision as much
as increasing the sample size by 33 percent. Adding a pretest correlated .75
with the outcome measure increases power and precision as much as increas-
ing the sample size by 128 percent. Since collecting data on a pretest often
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i1s less expensive than increasing the sample size, it is worthwhile to spend
some time contemplating the types of pretest measures that are likely to be
highly correlated with the outcome. Often a pretest that is operationally iden-
tical to the posttest is the best choice.

Assessing Treatment-Effect Interactions. In addition to estimating the
average effect of the treatment, it is also valuable to study treatment-effect
interactions, which means studying how the size of the treatment effect varies
across different types of individuals. The meaning of a treatment-effect in-
teraction can perhaps best be understood graphically.

Figure 18.2 presents a scatterplot of the results of a hypothetical ran-
domized experiment. Qutcome scores vary along the vertical axis while

Figure 18.2. Data from a Hypothetical Randomized Experiment
with a Positive Treatment Effect and No Treatment-Effect Interaction.

70

QOutcome Scores

10 T T I
0 10 20 30 40

Pretest Scores
Key:

0O Experimental
Q Control



Using Regression Models 425

pretest scores vary along the horizontal axis. The scores for individuals in
the experimental group are denoted by squares. The scores for individuals
in the control group are denoted by circles. The regression line for the regres-
sion of the outcome scores on the pretest scores is drawn in the figure for
each group separately. The upward slope of the regression lines means that
individuals who were high on the pretest also tend to be high on the posttest
or outcome, and vice versa.

Notice that the mean of the squares and circles along the horizontal
(pretest) dimension are close to equal (that is, the groups are not displaced
horizontally). This shows that individuals were randomly assigned to the
treatment groups. Also notice that the squares are higher than the circles
on the vertical (outcome) dimension (that is, the regression lines are dis-
placed vertically). This reflects the effect of the treatment. The squares are
about twenty points higher on the outcome variable than the circles, reveal-
ing an average treatment effect of about twenty points. The 95 percent con-
fidence interval for the average treatment effect in the plotted data runs from
19.7 to 21.1. Notice that the regression line in the experimental group is
also about twenty points higher than the regression line in the control group.
Whenthe pretest is added to the analysis as a covariate, the treatment effect
is literally estimated as the vertical displacement between the regression lines,
rather than as the difference between the outcome means in the two groups,
as would be the case without the pretest.

Also notice that the treatment effect is the same regardless of the indi-
vidual’s pretest score. For example, the treatment effect is about twenty points
both for individuals with relatively high pretest scores (say 30) and for indi-
viduals with relatively low pretest scores (say 12). This effect is readily ap-
parent from the observation that the regression lines are parallel, indicating
that the effect of the treatment does not interact with the pretest scores.

Now consider Figure 18.3. The squares are higher than the circles
and the regression line for the experimental group is displaced above the
regression line for the control group, both of which reflect the average effect
of the treatment. But the size of the treatment effect varies with the individ-
ual’s pretest score. Individuals with high pretest scores (say 30) have a treat-
ment effect of about fifty points (the 95 percent confidence interval runs from
46.6 to 51.5), while individuals with low pretest scores (say 12) have a treat-
ment effect of about twenty points (the 95 percent confidence interval runs
from 19.6 to 23.1). This result shows that the effect of the treatment inter-
acts with the pretest and is readily apparent from the observation that the
regression lines are not parallel.

In Figure 18.4, the interaction between pretest and treatment is even
more extreme. The effect of the treatment is positive in the population on
average and for individuals with high pretest scores, but the treatment effect
is negative for individuals with low pretest scores.

The implication is that the data analyst needs to pay attention to both
the average and the interactive effects of the treatment if appropriate policy
implications are to be drawn. For example, although a novel teaching method
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Figure 18.3. Data from a Hypothetical
Randomized Experiment with a Treatment-Effect Interaction.
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might be superior to the old teaching method on average, the old method
might nonetheless be superior for low-ability students. In this case, it would
be better to tailor the teaching method to the type of student rather than
to apply the new teaching method blindly to all students.

Outliers and Curvilinearity
When pretest measures are included in the analysis, it is important to plot

the data, as in Figures 18.2 through 18.4, and to examine both the plots
and the fit of the regression lines. Look for interactions so they can be taken
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Figure 18.4. Data from a Hypothetical
Randomized Experiment with a Crossover Treatment-Effect Interaction.
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into account in the analysis. Also look for outliers and evidence of curvilinear-
ity. Curvilinearity means that the regression “lines” that best fit the data are
curved rather than straight. An outlier can make it appear as if either an
average effect or an interaction is present when it is not. If outliers are present,
try removing them and repeating the analysis to see how much difference
the outliers make. Curvilinearity that is not recognized can hide an interac-
tion or lower the power and precision of the analysis. Curvilinearity can
be taken into account either by transforming the data or by polynomial regres-
sion. More details are given in any standard regression text (for example,
Hamilton, 1992; Draper and Smith, 1981), or see a statistical consultant.
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An Example

In a simple randomized experiment described in Ryan, Joiner, and Ryan
(1985), ninety-two students in an introductory statistics class recorded their
pulse, height, weight, gender, how much they smoked, and how much they
typically exercised. Each student then flipped a coin to determine his or her
treatment assignment. Heads meant they were to run in place for a minute;
tails meant they were to rest quietly. A minute later, the students took their
pulse again. The resulting data are distributed with the Minitab computer
software program and available in Ryan, Joiner, and Ryan (1985).

An examination of the data revealed an error requiring that one stu-
dent’s data (in row 54) be omitted from the analysis. For the remaining data,
plots of the distributions of the pretest pulse data in the two treatment groups
looked reasonably similar. However, there were statistically significant differ-
ences between the treatment groups on height (¢ = 2.5, df= 89, p = .01) and
weight (£=2.29, df = 89, p = .03), and there were significantly fewer women
in the experimental group (N = 10) than in the control group (N = 24) ac-
cording to a chi-square goodness-of-fit test (x? =5.76, df = 1, p = .02). The
corresponding sample sizes for the men were 24 and 32, respectively, and
this difference was not statistically significant. It appears that the random
assignment might have been somewhat compromised by women who chose
not to run in place even though their coin showed heads.

The mean of the pulse rates at posttest was 72.3 in the control group
and 91.9 in the experimental group. This mean difference of 19.6 beats per
minute was statistically significant (¢ = 6.48, df = 89, p< .001, 95% confidence
interval = 13.5 to 25.5). Adding the pretest pulse as a covariate in an anal-
ysis of covariance reduces the width of the confidence interval for the size
of the effect by 29 percent (treatment effect estimate = 19.15; 95% con-
fidence interval = 14.89 to 23.41). Based on either analysis, it is clear that
running in place significantly raised the pulse in this population of individ-
uals. A plot of the posttest pulse versus the pretest pulse for each group is
given in Figure 18.5. This plot suggests that there is no interaction between
the treatment and the pretest pulse (¢=.92, df =87, p = .36).

However, there is a statistically significant interaction between the
treatment and weight (1=3.74, df =87, p=.0003). This interaction is re-
vealed in the plot of the posttest pulse versus weight for each group in Figure
18.6. The interaction means that the treatment has a smaller effect for heavier
individuals than for lighter individuals. In particular, for each pound in-
crease in weight, the effect of the treatment on posttest pulse is reduced on
average by .44 beats per minute (95% confidence interval = .21 to .67).

This interaction is probably due to a confounding between weight and
gender. As further examination of the data reveals, the interaction arises
because running in place has less effect on men (treatment effect estimate =
12.9) than women (treatment effect estimate = 34.4), and men tend to weigh
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Figure 18.5. Data from the Pulse Study (Ryan, Joiner, and Ryan, 1985)
Showing a Positive Treatment Effect and
No Interaction Between the Treatment and the Pretest Pulse Rate.
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more than women. In addition, the interaction between treatment and weight
is not statistically significant when the data for each gender are analyzed
separately. Thus the plot in Figure 18.6 could easily be misleading if one
were not careful to examine the data in greater depth. In addition, if ex-
trapolated beyond the reasonable range of the data, the regression lines in
Figure 18.6 would suggest that running in place actually slows the pulse
in very heavy individuals. The moral is that you need to keep your wits
about you when analyzing data.
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Figure 18.6. Data from the Pulse Study (Ryan, Joiner, and Ryan, 1985)
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Concluding Comments on the Randomized Experiment

220

Although randomized experiments can be biased, especially by differential
attrition, they are a potentially powerful tool for estimating treatment effects.
When well implemented, a randomized experiment can produce results that
are more credible and precise than the results from any other design. Evalu-
ators implementing a randomized experiment in a field setting will find it
useful to collect pretest measures that are highly correlated with the out-
come measure so as to increase the precision of the estimate of the treat-
ment effect. It is also useful to collect pretest measures to assess (1) the
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integrity of the random-assignment process, (2) differential attrition, and
(3) treatment-effect interactions.

Regression-Discontinuity Design

In the regression-discontinuity design, individuals are assigned to treatment
conditions based on their scores on a quantitative pretest measure. Spe-
cifically, a cutoff score on the pretest is specified and individuals with pretest
scores above the cutoff are assigned to one treatment condition while indi-
viduals with pretest scores below the cutoff are assigned to the other treat-
ment condition. After individuals are assigned to treatment conditions, the
different treatments are administered, and each individual is assessed on
an outcome measure. Detailed discussion of the regression-discontinuity de-
sign is provided by Marcantonio and Cook in Chapter Seven of this book.

To estimate the average effect of the treatment, a separate regression
line is fitted to the data on each side of the cutoff score. The vertical dis-
placement between the two regression lines at the cutoff point is an estimate
of the effect of the treatment for individuals near the cutoff point. For ex-
ample, consider Figures 18.7 and 18.8. Both figures contain scatterplots of
the outcome scores versus the pretest scores. The vertical line denotes the
cutoff point on the pretest. The squares denote the scores of individuals who
receive the treatment (individuals in the experimental group). These indi-
viduals all had scores on the pretest that fell below the cutoff. The circles
denote the scores of individuals who do not receive the treatment (individ-
uals in the control group). These individuals all had scores on the pretest
that fell above the cutoff. Separate regression lines have been fitted to the
data in each group and are plotted in the figures.

In Figure 18.7, there is no treatment effect. As a result, the two regres-
sion lines fall on top of one another, indicating that there is no vertical dis-
placement or break between the lines at the cutoff point. In Figure 18.8,
there is a positive treatment effect. As a result, the regression line for the
experimental group is displaced above the regression line for the control
group. The vertical displacement between the two lines is the estimate of
the size of the treatment effect at the cutoff point.

Curvilinear Regression Lines

"The regression lines must be properly fitted to the data in both the experimen-
tal and control conditions; otherwise a bias in the estimate of the treatment
effect can occur. In particular, a bias can occur if the true relationship be-
tween outcome and pretest is curvilinear in one or both treatment groups
but a straight regression line is fitted to the data.

The biasing effect of curvilinearity is demonstrated in Figure 18.9.
In this figure, there is no scatter in the data around the true (curvilinear)
regression line, meaning that the outcome scores can be perfectly predicted
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Figure 18.7. Data from a Hypothetical
Regression-Discontinuity Design Where the Treatment Has No Effect.
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from the pretest scores. This is unrealistic, but to include scatter might make
the main point of the example less clear. Also notice that the true relation-
ship between the pretest and outcome scores is curvilinear. Since there is
no break in the data at the cutoff point, there is no treatment effect. How-
ever, if linear regression lines were fitted to the data as shown in the figure,
there would be a break between the lines at the cutoff point. This means
that an analysis of the data using linear regression lines would find a treat-
ment effect when in fact there is none. Only if the curvilinearity in the data
were properly modeled would the analysis reach the correct conclusion about
the absence of a treatment effect.
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Figure 18.8. Data from a Hypothetical
Regression-Discontinuity Design Where the Treatment Has a Positive Effect.
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To determine the shape of the true relationship between the outcome
and pretest, it helps to plot the data. If the data have a lot of scatter around
the true regression lines (unlike the plot in Figure 18.9), sometimes the shape
of the relationship can be more easily discerned by adding a median trace.
A median trace is created by dividing the scatterplot into vertical columns
(either of equal width or of equal numbers of data points) and calculating
the median of the outcome scores within each column. These medians are
then plotted on top of the scatterplot. Often a median trace reveals the na-
ture of the relationship more clearly than the scatterplot of the original data
alone.
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Figure 18.9. Data from a Hypothetical Regression-Discontinuity Design
Where the True Regression Line is Curvilinear
but Linear Regression Lines Have Been Fitted to the Data.
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An example of a median trace is presented in Figures 18.10 and 18.11
(Moore and McCabe, 1989). In the early 1970s, American men were sub-
ject to a military draft conducted by lottery. Priority numbers were sup-
posed to be assigned at random according to the day of birth. Controversy
arose over the randomness of the assignment of priority numbers in 1970.
Figure 18.10 plots the draft priority number on the vertical axis and the
day of birth on the horizontal axis. A quick look at this plot suggests that
no relationship exists between the two variables, as would be the case if the
lottery were random. However, the median trace plotted by month in Figure
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Figure 18.10. Plot of the Selective Service
Draft Priority Numbers Versus Day of Birth for 1970.
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Source: From INTRODUCTION TO THE PRACTICE OF STATISTICS, by David
Moore and George McCabe. Copyright © 1989 by W. H. Freeman and Co. Reprinted by per-
mission. Data from Feinberg, 1971.

18.11 shows a clear downward slope, which reveals the true relationship that
exists in the data (men born later in the year tend to have lower priority
numbers) and provides confirming evidence of the faulty randomization
procedure.

Another technique for assessing the shape of a regression line is to
smooth the data in the scatterplot using a moving average (or moving me-
dian). A moving average of length five, for example, is generated by taking
the average of the outcome scores for the individuals with the lowest five
pretest scores. This average is plotted on the scatterplot above the third lowest
pretest scores. The lowest pretest score is then dropped and the average of
the outcome scores for the individuals with the five next lowest pretest scores
is calculated and plotted above the fourth lowest pretest score, and so on.
A moving average can also be calculated for other lengths to determine which
one is the most revealing.

If curvilinearity is detected, curvilinear rather than straight regres-
sion lines need to be fitted. This change can be accomplished by transforming
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Figure 18.11. A Plot of the Selective Service Draft
Priority Numbers Versus Day of Birth for 1970 with a Median Trace by Month.
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Source: From INTRODUCTION TO THE PRACTICE OF STATISTICS by David
Moore and George McCabe. Copyright © 1989 by W. H. Freeman and Co. Reprinted by per-
mission. Data from Feinberg, 1971,

the data or by using polynomial regression. In either case, a statistical con-
sultant might prove helpful. Usually the fitting process involves a good bit
of trial and error. After each trial, it is recommended that the residuals from
the regression analysis be plotted against the pretest scores. The residuals
are the discrepancies between the data points and the regression line. Plot-
ting them often can help reveal where the regression line fails to fit the data.

Treatment-Effect Interactions

It is possible that the effect of the treatment is different for individuals with
different scores on the pretest. In other words, there may be a treatment-
effect interaction with the pretest. An example is given in Figure 18.12. In
this figure there is a large displacement between the regression lines at the
cutoff point revealing that the treatment has a positive effect for individuals
near the cutoff point. The size of the treatment effect varies, however, de-
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pending on the individual’s pretest score. If both regression lines are extrapo-
lated onto the other side of the cutoff point, as is done in the figure, the
treatment effect for individuals with low pretest scores is shown to be much
larger than the treatment effect for individuals with high pretest scores.
There is a potential problem here: drawing the conclusion that the
treatment effect differs for individuals with different pretest scores requires
extrapolating the regression lines as described above, and the further the
lines are extrapolated, the greater is the chance for error. The possibility
for an increase in error arises because the regression lines are being extrapo-
lated into regions in which there are no data. The regression line for the

Figure 18.12. Data from a Hypothetical
Regression-Discontinuity Design with a Treatment-Effect Interaction,
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experimental group is being extrapolated onto the other side of the cutoff
point where none of the individuals received the treatment. The converse
holds for the regression line in the control group. Researchers should place
more confidence in the estimate of the treatment effect at the cutoff point
than at any other point on the pretest because the estimate at this point in-
volves the least amount of extrapolation and therefore is the most credible
and precise.

Nonetheless, it is important that an interaction between the treatment
and the pretest be taken into account when fitting the regression lines. To
ignore an interaction when one is present (that is, fitting parallel regression
lines when the lines are not parallel) can bias the estimate of the treatment
even at the cutoff point. Therefore, regression lines must be fitted to take
account of an interaction if one is present, but conclusions about the effect
of the treatment for individuals with pretest scores other than at the cutoff
should be drawn with caution.

Other Sources of Bias

Any source of discontinuity in the regression of the outcome on the pretest
scores that is not due to the treatment is a potential source of bias. A bias
could be introduced if more individuals in one group drop out of the study
than do individuals in the other group. For such reasons it is important to
assess the nature and degree of any differential attrition.

A bias also can be introduced if the assignment to treatment condi-
tions is not based on the cutoff score as is assumed. For example, a bias
could be introduced if individuals with pretest scores on the “wrong” side
of the cutoff are able to alter or lie about their pretest scores so as to be ad-
mitted to the treatment group. Evidence that this has occurred might be
obtained by plotting the distribution of the pretest scores and looking for
gaps or dips in the distribution near the cutoff score. Such manipulation
of cutoff scores was alleged to have occurred in a civil service examination
for engineering positions in Chicago in 1966 (Freedman, Pisani, Purves,
and Adhikari, 1991, p. 51). There were fifteen job openings and 223 appli-
cations. A plot of the distribution of the examination scores is given in Figure
18.13. The substantial gap between the highest fifteen scores and the rest
of the scores in the distribution suggests that some were altered.

An Example

‘The study, described earlier, of the effect on subjects’ pulse rate of running
in place was a randomized experiment. However, this study could be turned
into a regression-discontinuity design simply by deleting data based on a
cutoff score. Suppose that individuals had been assigned to treatment con-
ditions using a cutoff score based on their initial pulse rate. In particular,
suppose that all individuals with a pretest pulse rate higher than 70 had been
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Figure 18.13. The Distribution of Scores
on a Civil-Service Examination in Chicago in 1966.
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of W. W. Norton and Company.

assigned to the experimental condition; as a result, the data from individ-
uals in the experimental condition who had a pretest pulse of 70 or below
will be ignored. Conversely, suppose that all individuals with a pretest pulse
rate of 70 or below were assigned to the control condition; in this case, the
data from individuals in the control condition who had a pretest pulse above
70 will be ignored. This assignment produces the data in Figure 18.14 which,
for all intents and purposes, is a regression-discontinuity design.

With these data, the effect of the treatment can be estimated by the
discrepancy between the regression lines at the cutoff point. This estimate
is 20.72 (95% confidence interval = 7.4 to 34.0), which is statistically sig-
nificant (¢=3.16, df = 38, p = .003). The result agrees well with the results
produced when the data from the study were analyzed as a randomized ex-
periment. Note, however, that the estimate of the treatment effect from the
regression-discontinuity design is less precise — that is, the confidence inter-
val is wider —than the estimate from the randomized experiment, partly be-
cause of the loss of data.
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Figure 18.14. Data from the Pulse Study (Ryan, Joiner, and Ryan, 1985)
in the Form of 2 Regression-Discontinuity Design.
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Concluding Comments on the Regression-Discontinuity Design

The regression-discontinuity design is particularly well suited for studying
treatments that are assigned on the basis of need or merit. In these cases,
a quantitative assessment of need or merit can be used as the pretest. As
a result, the design can sometimes be implemented when the random as-
signment of individuals to treatment conditions is not possible.
Nonetheless, the randomized experiment has at least three advantages
compared to the regression-discontinuity design. First, the randomized ex-
periment can accommodate some misfitting of the regression model and still
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produce a reasonable estimate of the effectiveness of the treatment. This is
much less true for the regression-discontinuity design. For example, if the
relationship between the pretest and the outcome is curvilinear and this cur-
vilinearity is not correctly modeled, the estimate of the treatment effect at
the cutoff point in the regression-discontinuity design can be biased. How-
ever, in the randomized experiment, incorrectly modeling curvilinearity can
reduce precision and power, but it will not bias the estimate of the average
effect of the treatment.

Second, while it is more important that the correct regression model
be fitted in the regression-discontinuity design than in the randomized ex-
periment (for the reason just noted), doing so is usually more difficult be-
cause data are missing compared to a randomized experiment. A regression-
discontinuity design is essentially a randomized experiment with missing
data. A comparison of Figures 18.2 and 18.8 shows that the data either above
or below the cutoff point are missing for each treatment group in the re-
gression-discontinuity design, unlike the data for the randomized experiment.
Because of these missing data, it is far more difficult to be confident about
correctly modeling both curvilinearity and treatment-effect interactions in
the regression-discontinuity design than in the randomized experiment.

Third, even if the correct regression model is fitted to the data, the
estimate of the treatment effect in the regression-discontinuity design will
be less precise (and the statistical significance test will be Jess powerful) than
the estimate of the treatment effect in the randomized experiment. Even under
ideal conditions, more than two-and-a-half times as many subjects are re-
quired in the regression-discontinuity design to have the same degree of pre-
cision and power as in the randomized experiment (Goldberger, 1972).

Nonequivalent Comparison Group Design

Unlike the randomized experiment, in the nonequivalent comparison group
design, individuals are not assigned to treatment conditions at random. Nor
are individuals assigned to treatment conditions according to a cutoff score
on a pretest, as in the regression-discontinuity design. Rather, in the non-
equivalent comparison group design, individuals are assigned to the treat-
ment conditions in some other, nonrandom fashion. They might self-select
themselves into treatment conditions, or researchers might assign the treat-
ments to preexisting groups, such as schools, that were formed previously
in a nonrandom fashion. As a result, the nonequivalent comparison group
design is often used to study the effects of a disability, or the effects of treat-
ments to which random assignment would be unethical, such as the results
of dropping out of school. Further discussion of the nonequivalent comparison
group design is provided in Chapter Six of this volume by Rog.
Without random assignment to conditions, the individuals in the differ-
ent treatment groups can, and usually will, differ in substantial ways. These
differences are called selection differences and can masquerade as a treatment
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effect. Even in the absence of a true treatment effect, the outcome scores
in the treatment groups are likely to differ substantially because of initial
selection differences. As a result, selection differences are a threat to valid-
ity and must be taken into account when data from a nonequivalent com-
parison group design are analyzed.

The two simplest and most commonly used statistical procedures for
taking account of selection differences are analysis of covariance and gain-
score analysis. Both procedures use the pretest scores to control the biasing
effects of selection differences. Which, if either, procedure is appropriate de-
pends on the circumstances.

Analysis of Covariance

Suppose the two treatment groups differ on the pretest because individuals
who have high scores on the pretest tend to be in one group more than the
other. Further, suppose that individuals with high scores on the pretest tend
to have high scores on the outcome or posttest. Because of these initial se-
lection differences, the groups will differ on the posttest even in the absence
of a treatment effect.

Analysis of covariance takes account of the effects of the selection differ-
ences by statistically matching individuals on their pretest scores before draw-
ing comparisons between the groups on the outcome scores. In particular,
analysis of covariance estimates the average effect of the treatment as the
mean difference in outcome scores between individuals from the two treat-
ment groups who are statistically matched on their pretest scores.

This procedure serves to remove selection differences as measured by
the pretest. Nonetheless, there are two potential inadequacies in this ap-
proach. First, if there are selection differences between the groups that are
not measured by the pretest but that influence the posttest, these will not
be controlled for by the analysis of covariance and therefore, will still bias
the estimate of the treatment effect. The more highly correlated the pretest
is with the posttest, the less room there is for selection differences that are
not measured by the pretest and that influence the posttest. Therefore, the
best pretests to use for removing selection differences are generally those
that are highly correlated with the posttest. This usually means using a pretest
that is operationally identical to the posttest (Campbell and Boruch, 1975;
Cronbach, 1982, points out this will not always be true, however). In addi-
tion, the analyst can use more than one pretest in the analysis of covari-
ance. In this case, the analysis of covariance will match on all the pretests
that are included in the analysis before drawing comparisons of the outcome
scores. But no matter how many variables are included in the analysis, in
most instances a reasonable suspicion will remain that not all the sources
of selection differences have been taken into account. If the suspicion is cor-
rect, the analysis will remain biased by selection differences.

Second, selection differences will not be properly controlled for if
any of the pretests that are included in the analysis are measured with
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error. Unfortunately, measurement error is ubiquitous in the social sci-
ences. However, procedures have been devised for taking account of mea-
surement error in the pretests (or covariates) in the analysis of covariance.
If there is only a single covariate in the regression analysis, all that is re-
quired 1s an estimate of the reliability of the covariate (Campbell and
Boruch, 1975; Reichardt, 1979). If multiple pretests are included in the
analysis, the most widely used correction procedure requires multiple mea-
sures of each covariate and performs the analysis using a structural equa-
tion modeling program such as LISREL (Jéreskog and Sérbom, 1988) or
EQS (Bentler, 1989). In either case, assistance from a statistical consultant
may be required.

Gain-Score Analysis

Gain-score analysis requires that the pretest be operationally identical to the
outcome or posttest variable. In this case, the pretest can be subtracted from
the posttest to create a gain score for each individual. The average effect
of the treatment is then estimated as the mean difference in gain scores be-
tween the treatment groups.

To understand how gain-score analysis takes account of selection differ-
ences, consider Figures 18.15 and 18.16. In both these figures, the mean
pretest and posttest scores for the experimental and control groups are plot-
ted. Gain-score analysis assumes that if there is no effect of the treatment
on average, the line connecting the pretest mean to the posttest mean in
the experimental group will be parallel to the line connecting the pretest mean
to the posttest mean in the control group, as in Figure 18.15. In other words,
gain-score analysis assumes the treatment has no effect on average if the
average gain from pretest to posttest in the experimental group is the same
as the average gain from pretest to posttest in the control group.

A treatment effect is present on average only if these two lines are
not parallel, as in Figure 18.16. In this case, the average effect of the treat-
ment is what accounts for the difference in the slopes of the two lines. In
other words, the treatment effect is the average gain from pretest to posttest
in the experimental group minus the average gain from pretest to posttest
in the control group.

In both figures, selection differences account for the mean difference
between the groups on the pretest. Gain-score analysis assumes that in the
absence of a treatment effect, the size of these selection differences will re-
main the same at the time of the posttest. If, in the absence of a treatment
effect, the groups would remain as far apart at the time of the posttest as
they were at 'the time of the pretest, gain-score analysis provides an unbi-
ased estimate of the average treatment effect. On the other hand, if in the
absence of a treatment effect the groups would either grow farther apart (for
example, the rich getting richer and the poor getting poorer) or come closer
together (for example, due to regression toward the mean), gain-score anal-
ysis will be biased.
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Figure 18.15. Pretest and Posttest Means
Showing No Treatment Effect in a Gain-Score Analysis.
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Additional pretest variables can be added to the gain-score analysis
as covariates so as to adjust for any initial selection differences on these vari-
ables via statistical matching and to assess treatment-effect interactions. How-
ever, if the pretest that was used to create the gain score is added as a covari-
ate, the result is the same as would be obtained by using analysis of covariance
rather than gain-score analysis.

An Example

The study of the effect of running in place on pulse rate described previ-
ously was a randomized experiment. However, we can create a nonequivalent
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Figure 18.16. Pretest and Posttest Means
Showing a Positive Treatment Effect in a Gain-Score Analysis,
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comparison group design by imagining that data are available only for the
women who were in the experimental group and only for the men who were
in the control group. The plot of the pretest pulse rate versus the posttest
pulse rate for these individuals is presented in Figure 18.17. These data
represent a nonequivalent comparison group design, as evidenced by the
horizontal displacement between the pretest scores in the two groups show-
ing that there is an initial difference between the groups on the pretest pulse
rate.

A gain-score analysis of the data in Figure 18.17 produces an esti-
mate of the treatment effect of 33.6 (95% confidence interval = 29.20 to
38.00). The estimate of the treatment effect from the analysis of covariance
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Figure 18.17. Data from the Pulse Study (Ryan, Joiner, and Ryan, 1985)
in the Form of a Nonequivalent-Comparison-Group Design.
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with the pretest pulse rate as the covariate is 34.86 (95% confidence inter-
val = 30.34 to 39.37). The estimates from these two analyses are similar
because the correlation between the pretest pulse rate and the posttest pulse
rate under resting conditions was 0.92, which is very high. The results from
the gain-score analysis and the analysis of covariance will not always be so
similar.

These estimates of the treatment effect from the analysis of the data
as a nonequivalent comparison group design are not very close to the esti-
mate of the average effect of the treatment as derived from the randomized
experiment (which was about 19). But the estimates from the nonequivalent
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comparison group design are close to the estimate of the effect for women
alone as derived from the randomized experiment (which was 34.4). This
is probably what should be expected given the way in which this nonequiva-
lent comparison group design was created (with only women in the experi-
mental group and only men in the control group). Seldom will the nature
of selection difference be so well known, however. In most practical circum-
stances, it will usually be more difficult to make sense of the results from
nonequivalent comparison group designs.

Concluding Comments on the
Nonegquivalent Comparison Group Design

Other statistical models for taking account of selection differences (besides
the analysis of covariance and gain-score analysis) are available. Many of
these procedures, such as selection modeling and modeling propensity scores
(see Rindskopf, 1986), are relatively complex statistically and probably re-
quire the help of a statistical consultant. Unfortunately, just as with the anal-
ysis of covariance and gain-score analysis, there is no guarantee that any
of these statistical procedures will adequately account for selection differ-
ences. The problem is that properly implementing any of these methods re-
quires information about the nature of selection differences that is usually
not available. The reason is that assignment to treatments was not random
as in a randomized experiment or was not determined by a known pretest
as in the regression-discontinuity design.

Uncertainty about how properly to control for selection differences
is the great weakness of the nonequivalent comparison group design. The
only resolution for this uncertainty is to use a range of assumptions about
the nature of the selection differences and thereby produce a range of esti-
mates of the size of the treatment effect; even then caution must be used
in interpreting results (Reichardt and Gollob, 1987). In other words, while
researchers can report that a range of estimates derived from a variety of
statistical analyses is their best guess about the size of the treatment effect,
they should forthrightly acknowledge that this best guess could be far wrong.
Otherwise researchers run the risk of misleading their audience.

Usually the best way to deal with initial selection differences is to try
to make them as small as possible when the study is being designed and
implemented. One way to do this is to forsake the nonequivalent compari-
son group design in favor of the randomized experiment.

Interrupted Time Series Design

In the interrupted time series design, measurements are made repeatedly
at regular intervals before the treatment is introduced, the treatment is
then introduced, and measurements are again repeated at regular intervals
(for a total of X time points). Further discussion of the interrupted time
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series design is provided by Marcantonio and Cook in Chapter Seven of
this handbook.

The term unit is used here to refer to the entity about which data are
collected. The interrupted time series design can be implemented with a single
unit (N = 1) or with multiple units (N> 1); in either case the units can be
either individuals or groups of individuals. In one instance, Blose and Holder
(1987) used the interrupted time series design to assess the effects of the liber-
alization of drinking laws in North Carolina. In this study, N was equal
to one, and the unit was a community because data on traffic fatalities were
collected at the level of the community. In contrast, Smith, Gabriel, Schoot,
and Padia (1976) used the interrupted time series design to assess the effects
of the Outward Bound program on participants’ self-confidence using ap-
proximately N = 200 individuals as the units. The time series of these data
are plotted in Figure 18.18. The vertical line just past week 15 indicates
the point at which the individuals participated in the Qutward Bound pro-
gram. The scores plotted at each time point are average responses across
a random sample of the two hundred participants.

Figure 18.18. Mean Levels of Self-Confidence
Before and After Participation in an Outward Bound Program.
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Sources: Smith, Gabriel, Schoot, and Padia, 1976. Copyright 1976 by Sage Publications.
Reprinted by permission of Sage Publications, Inc. Also Glass, 1988, Copyright 1988 by the
American Educational Research Association. Reprinted by permission of the publisher.

To estimate the effect of the treatment, the first step is to model the
trend in the data collected before the treatment was introduced. This trend
is then projected forward in time and compared to the trend in the data col-
lected after the treatment was introduced. The difference between the pro-
Jected and actual trends is the estimate of the treatment effect. In Figure
18.18, for example, the trend in the self-confidence data before participa-
tion in OQutward Bound is lower than the trend in the data after participa-
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tion. As a result, it appears as if Qutward Bound has a positive effect on
self-confidence in the population of individuals in the study.

As Marcantonio and Cook emphasize in Chapter Seven of this hand-
book, the interrupted time series design is very similar to the regression-
discontinuity design. The only difference is that in the regression-discontinuity
design, assignment to treatment conditions is determined by a cutoff score
on a pretest measure; in the interrupted time series design, the assignment
to treatment condition is determined by a cutoff score based on chronologi-
cal time. This distinction has an important implication that will be described
below, but for the most part, the logic for the analysis of data from the in-
terrupted time series design is similar to the logic for the analysis of data
from the regression-discontinuity design.

Just as in the regression-discontinuity design, whether the estimate
of the treatment effect is unbiased in the interrupted time series design de-
pends on whether the trends in the data, both before and after the treat-
ment is introduced, have been accurately modeled. To achieve this accuracy,
the researcher must correctly model any curvilinearity. Curvilinearity can
be modeled by either transforming the data or using polynomial regression.
In time series analysis, a data transformation called first-order differencing
can be used to remove linear trends, second-order differencing can be used
to remove quadratic trends, and so on (Box and Jenkins, 1970; McCleary
and Hay, 1980). A statistical consultant can be helpful here. Correctly modei-
ing the trends in the data also means that treatment-effect interactions must
be properly taken into account. In the context of the interrupted time series
design, a treatment-effect interaction means that the treatment effect changes
over time,

Just as in the regression-discontinuity design, smoothing the data (using
either a median trace or a moving average as described above) can make
it easier for the analyst to recognize both curvilinear trends and treatment-
effect interactions. As an illustration, Figure 18.19 is a time series plot of
shipments of oil to service stations in France (Hogarth, 1980). By looking
at these data, can you describe the nature of the effect of the Arab oil em-
bargo toward the end of 1973 and the effect of increases in the price of oil
toward the beginning of 1976? The time series in Figure 18.20 is the same
data after smoothing (see Makridakis and Wheelwright, 1978) and reveals
the nature of these effects much more clearly. Notice how the effect of the
oil embargo in 1973 is quite abrupt while the effect of price increases in 1976
is more gradual.

The one important distinction between the regression-discontinuity
design and the interrupted time series design arises because of possible auto-
correlation of data. Different from outcome data in the regression-discon-
tinuity design, the outcome data in the interrupted time series design are
likely to be correlated among themselves. That is, the observation at time
1 in the time series is likely to be correlated with the observation at time
2, which is likely to be correlated with the observation at time 3, and so
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Figure 18.19. Time Series Plot of Shipments of Qil to Service Stations in France.
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Source: From R. Hogarth, Judgement and Choice. Copyright 1980 by John Wiley & Sons.
Original figure supplied by S. Makridakis and B. Majani. Reprinted by permission of John Wiley
& Sons, Ltd., and Spyros Makridakis.

on. Such autocorrelation produces no bias in the estimate of the size of the
treatment effect using standard regression procedures, but it does bias statisti-
cal significance tests and confidence intervals that are created by standard
regression procedures. This bias occurs because standard regression proce-
dures assume that there is no autocorrelation among the data points. To
control for the effects of autocorrelation among the outcome scores, the regres-
sion analysis must be modified. Three different approaches for this are
described below. Which one is most appropriate depends on the circum-
stances. In any case, seeking help from a statistical consultant is probably
advisable. '

ARIMA Modeling

‘The autoregressive, integrated, moving average (ARIMA) modeling ap-
proach assumes that the degree of autocorrelation in the observations is con-
stant over time. ARIMA modeling uses the data to estimate the degree of
autocorrelation and then adjusts the regression analysis accordingly (Box
and Jenkins, 1970; McCain and McCleary, 1979; McCleary and Hay, 1980).
One potential advantage is that ARIMA modeling can be used with N = 1.
One potential drawback is that the number of time points (K) must usually
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Figure 18.20. Time Series Plot of Shipments of Qil
to Service Stations in France After Data Smoothing,
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be relatively large. Some statisticians suggest that the number of repeated
observations (K) must be at least fifty, but the minimum size of K depends
on the variability in the data: If there is relatively little variation (which is
more likely when the unit is a group of individuals such as a community
or state than when the unit is an individual) the minimum value for K might
be substantially smaller.

If Nis greater than 1, ARIMA modeling could be applied to the data
from each unit separately, or the data at each time point could be aggregated
across the units (as in the Outward Bound study) and ARIMA modeling
applied to the aggregated data. The first approach would allow the researcher
to assess individual differences in the effectiveness of the treatment while
the second might allow X to be smaller. Unfortunately, many software pack-
ages either do not offer ARIMA modeling or do not provide the options
for using ARIMA modeling to estimate the effects of treatments. The BMDP
program is one that allows both {Dixon, 1985).

Multivariate Analysis of Variance

The multivariate analysis of variance (MANOVA) approach allows the au-
tocorrelations among observations to have any constant or nonconstant
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pattern over time (Swaminathan and Algina, 1977). The MANOVA ap-
proach uses the data to estimate the autocorrelations at each time point and
then adjusts the regression analysis accordingly. By relaxing the assump-
tion made by ARIMA that the degree of autocorrelation is constant over
time, MANOVA gains the advantage that X can be quite small. The disad-
vantage is that by relaxing this assumption, N must be substantially larger
than K. The MANOVA analysis fits a common (aggregate) trend to the
data from all N units and estimates the average effect of the treatment across
all N units.

Hierarchical Linear Modeling

The hierarchical linear modeling (HLM) approach requires that N be sub-
stantially greater than 1 but, unlike the MANOVA approach, does not re-
quire that NV be greater than X or even that observations be collected at the
same time points on the different units (Bryk and Raudenbush, 1987, 1992),
The HLM approach fits regression models at two different levels. At the
first level, HLM fits a regression model and estimates the effects of the treat-
ment for each unit individually. At the second level, HLM fits a regression
model to the estimates of the treatment effects from the first level allowing
for the inclusion of additional covariates. The model at the second level pro-
vides an estimate of the average treatment effect and estimates of interac-
tions of the treatment with any of the covariates that are included. By using
two hierarchical levels of analysis, the HLLM approach circumvents the need
to model the nature of the autocorreclation among the observations.

Concluding Comments on the Interrupted Time Series Design

The interrupted time series design can be biased by “history” or other threats
to validity (see Chapter Seven of this volume). One way to remove these
biases is by adding a “control” time series of observations that is susceptible
to the same biases as the experimental series but is not given the treatment.
The data from the control series can be analyzed just like the data from the
experimental series. The treatment effect is then estimated as the difference
between the discontinuity in the experimental series at the point of the in-
tervention and the discontinuity in the control series at the same time point.

One advantage of the interrupted time series design, compared to the
other three designs described in this chapter, is that the interrupted time
series design allows the researcher to study the time course of the treatment
effect. For example, the researcher can assess whether the treatment effect
occurs abruptly or is delayed, and whether it increases, decreases, or re-
mains the same over time. The models for studying the time course of the
treatment have been especially well developed within the ARIMA model-
ing approach (Box and Tiao, 1975).
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Conclusions

When estimating the effects of treatments using any of the four designs
described above, we recommend the following practices.

Draw pictures of the data. Pictures can help you decide which statistical
analyses are appropriate and can help you interpret the results of statistical
analyses.

Watch for improper fits in the statistical analysis such as a linear regres-
sion line being fitted to curvilinear data. Fitting the wrong model can bias
the estimates of treatment effects.

Assess treatment-effect interactions. Treatment-effect interactions re-
veal how a treatment effect varies either across individuals or time. Under-
standing how the effect of a treatment varies is as important, if not more
so, than estimating the average effect of the treatment.

Ask yourself if there are any hidden biases in the statistical analyses.
For example, it is usually impossible to determine from the data alone
whether the analysis of covariance properly takes account of selection dif-
ferences in the nonequivalent comparison group design. You also have to
understand the logic of what the analysis of covariance does and, using your
(imperfect) substantive knowledge of the study, decide whether that logic
fits the circumstances.

Report the degree of uncertainty forthrightly in the results. Biases can-
not all be removed with complete certainty. As a result, there will always
be uncertainty about the size of treatment effects. Researchers should make
sure that readers are not misled into believing that the results are more cer-
tain than is warranted. Proper presentation of results includes using both
confidence intervals and multiple analyses when you are not sure which sin-
gle analysis is correct.
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